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The standard framework for calculating the absolute binding free
energy of a macromolecular association reaction A � B3AB with an
association constant KAB is to equate chemical potentials of the
species on the left- and right-hand sides of this reaction and evaluate
the chemical potentials from theory. This theory involves (usually
hidden) assumptions about what constitutes the bound species, AB,
and where the contribution of the solvent appears. We present here
an alternative derivation that can be traced back to Bjerrum, in which
the expectation value of KAB is obtained directly through the statis-
tical mechanical method of evaluating its ensemble (Boltzmann-
weighted) average. The generalized Bjerrum approach more clearly
delineates: (i) the different contributions to binding; (ii) the origin of
the much-discussed and somewhat controversial association entropy
term; and (iii) where the solvent contribution appears. This approach
also allows approximations required for practical evaluation of the
binding constant in complex macromolecular systems, to be intro-
duced in a well defined way. We provide an example, with applica-
tion to test cases that illustrate a range of binding behavior.

The importance to biochemistry of being able to calculate
absolute and relative binding affinities from the structures of

macromolecular complexes is clear. A large body of literature on
the theory, practice, and application exists. See, for example,
refs. 1–8 for recent papers that discuss or review the theory and
methods. Nevertheless, there is still controversy over some basic
theoretical issues. There is agreement that association is accom-
panied by a loss of translational and rotational (association)
entropy but disagreement over the magnitude, whether it varies
significantly from system to system or can be approximated by a
single value, what theoretical model should be used to estimate
it, and how to include solvent effects. This controversy has
motivated recent experimental studies using tethered dimeriza-
tion to estimate translational entropy loss (9, 10). Accurate
accounting of the association term is essential for the calculation
of absolute binding free energies. Alternatively, if it could be
reliably established by experiment or theory that this term is
constant for some set of binding reactions, this would greatly
simplify the calculation of relative binding free energies for those
systems.

The traditional theoretical framework for calculating the abso-
lute binding free energy for the reaction A � B3AB is to equate
the chemical potentials of the species on the left- and right-hand
sides of this reaction and to evaluate the chemical potentials of the
three species, A, B, and AB by using some theory, as described in
Hill’s classic statistical mechanics treatment of association (11).
Recent work describes the extension of this approach to macro-
molecular association and to ligand–membrane association, along
with a detailed discussion of other theoretical issues (1, 2). How-
ever, the chemical potential approach is not the only way to
approach the problem. We present here an alternative derivation,
which can be traced back to Bjerrum, in which the expectation value
of the association constant KAB is obtained directly from ensemble
average quantities. Our approach also, like several previous treat-
ments of binding (see, e.g., refs. 1, 12, and 13) emphasizes the
advantage of treating the interaction between associating partners
by using a potential of mean force. Our goals are: First, to provide
a straightforward but rigorous theoretical treatment of binding free

energy. Second, to clarify, in response to recent work, the origin of
the association entropy term, how it may be calculated or measured,
and what the role of the solvent is in this term. Third, to use the
theoretical framework to guide the approximations one must
inevitably introduce for a computational tractable method for
macromolecular association in solvent.

Theory
The ‘‘Bjerrum’’ approach to calculating the absolute binding free
energy of a reaction A � B 3 AB is simply to calculate the
expectation value of the equilibrium constant KAB � [AB]�[A][B]
directly from the usual statistical mechanical expression for eval-
uating the required observables (in this case concentrations) from
Boltzmann-weighted averages. Consider one molecule each of A
and B in a large volume V of solvent. The same equilibrium constant
will be obtained from this system averaged over a sufficiently long
time as from a large number of A and B molecules at equilibrium.
Without loss of generality, we define the coordinate system by
placing A in a fixed orientation at the origin. A particular config-
uration of this system is then specified by the N solvent atom
coordinates, rV � (rV1, rV2 . . . rVN), the position and orientation
coordinates of B with respect to A, r, and �, respectively, and the
internal coordinates of A and B and qA and qB, respectively. The
orientation coordinate is � � {�, �, �), where � and � define an
axis in polar coordinates, and � is the rotation about that axis. Some
subset of all possible configurations corresponds to the associated
state (AB is present); the rest correspond to the dissociated state (A
and B present). The ratio of average concentrations is

KAB �
�AB�

�A��B�
� fAB�V�(fA�V)(fB�V), [1]

where fi is the fraction of the configurations in which the species
i � A, B or AB is present. To evaluate fi, we define a function
H(r, �), which is 1 for those positions�orientations of B where
it forms a complex with A, and which is 0 otherwise. fi may now
be evaluated from ensemble averages of H(r, �):

fAB � �H�r, �	
, fA � fB � �1 � H�r, �	
. [2]

Now A and B interact with some potential of mean force (pmf),
which depends on their relative position and orientation and
which is defined as

��r, �	 � ��
r � �

r,�

�dU�rv, qa, qb, r, �	�dr, �

r,�fixed

drd�, [3]

where U is potential energy of the whole system. The pmf �(r, �)
is the reversible thermodynamic work necessary to bring A and
B from a large separation (where � � 0 by definition) to some
separation�orientation (r, �). It is an exact quantity obtained
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from the integration of the Boltzmann-weighted solvent and
internal coordinate averaged force between A and B (14).
Clearly, the region where � is significantly negative (
�1 kT)
provides one intuitively appealing criterion for defining the
bound state, H(r, �) � 1. This point is discussed below. In the
dilute limit (V3 �), clearly fA, fB3 1, fAB3 0, but the product
fABV tends to a limit, equal to the binding constant, of

�H�r, �	
V�limV3 � �

V�H�r, �	e����r,�	drd�

�e����r,�	drd� �
limV3 �

�
1

8�2�H�r, �	e����r,�	drd� � KAB,

[4]

where over most of the integration volume � � 0, the integrand
of the denominator is unity, and its integral is just B’s rotation�
translation (R�T) phase space volume 8�2V. The binding con-
stant in Eq. 4 can be written KAB � VBPV�8�2, which defines a
Boltzmann-weighted phase volume (BPV) as VBPV �
�He���drd� with units (length�radians)3. KAB has the units of
volume in which concentrations are expressed (usually 1 liter�
mol � 1,660 Å3�molecule), setting the units for integration
length of dr (11.84 Å in this example). It is customary to define
the absolute binding free energy as

�GAB � �kT lnKAB�Vref, [5]

where it is understood that this refers to the free energy of
binding B from a reference concentration 1�Vref, although
because Vref is usually omitted in the literature, the choice of
reference state must be inferred from the units used for KAB.
Differentiation of Eqs. 4 and 5 by T gives the enthalpy and
entropy contributions,

�H � ��
H�1 � T�d�

dT
H�1
[6]

�S
k

� ln� 1
8�2Vref

�H�r, �	e����r,�	drd��
	 ���
H�1 �

1
k
�d�

dT
�

H�1

, [7]

where

�. . .
H � 1 �

� �. . .	H�r, �	e����r,�	drd�

�H�r, �	e����r,�	drd�

[8]

indicates an ensemble average over the bound state phase
volume. In the bound state, the probability of a particular
position�orientation of B is p(r, �) � exp(���(r, �))�VBPV,
whereas in the unbound state, the probability is 1�(8�2Vref), thus
the loss of R�T entropy on binding may be formally defined, by
using S � �k �p ln p, as

�SR�T

k
� �ln p�r, �	
H � 1 	 ln� 1

8�2Vref
�

� ���
H � 1 	 ln� VBPV

8�2Vref
�, [9]

which can also be obtained from Eq. 7 by setting the last
(solvent�internal entropy) term to zero (see also equation 51 and
following discussion of ref. 1).

Eqs. 4, 6, and 7 are exact for dilute solutions. However, direct
evaluation of these expressions to sufficient accuracy is likely be
impractical for most binding reactions of interest to biochemists, so
it is necessary to introduce some approximations for computational
tractability. We illustrate one approach, based on the quasihar-
monic method (although we emphasize this involves significant
approximations, and that other approaches are possible), and
consider only cases where the pmf between A and B has a single well
defined minimum �min. Methods for multiple minima are discussed
in detail in recent papers (8, 15). The energy of the AB complex
near the minimum can be expanded in a Taylor series and to first
order is a harmonic function of displacement in the translational,
rotational, and internal coordinates away from this minimum, �q �
(�qa, �qb, �r, ��):

� � �min 	 1⁄2�q�F��q, [10]

where F is the force constant matrix. The quasiharmonic ap-
proximation of F is (16, 17)

F � kT �
ij
2��1, [11]

where [
ij
2]�1 is the inverse of the coordinate fluctuation covari-

ance matrix 
ij
2 � ��qi�qj
. The configurational integral over

these coordinates is then

�
0

�

e�����qa,�qb,�r,��	 � e���min	�2�	n�
ij
2�, [12]

where n is the total number of internal, translational, and
orientational degrees of freedom, and �
ij

2� is the determinant of
the coordinate fluctuation covariance matrix, 
ij

2. The usefulness
of the quasiharmonic method is that even if the fluctuations in
qa, qb, r, and � about the minimum energy structure are not
strictly Gaussian (i.e., the energy surface is anharmonic), the
integral of the Boltzmann factor is often well approximated by
mean squared magnitude of the fluctuations �
ij

2�.
Eq. 12 accounts for the correlation between internal, transla-

tional, and orientational motions in the off-diagonal terms of 
ij
2. A

further reasonable simplification is that different kinds of motions
are uncorrelated, so that internal motions of A, B, the three
translational motions of B, and the librational motion of B with
respect to A are independent, i.e., the corresponding off-diagonal
terms in 
ij

2 are zero. The determinant may then be factored, and
substitution of Eq. 12 into Eq. 6 yields

KAB � e���min�	8�3
x
y
z�

�

3

	63�
�	�
A(bnd)

2 

B(bnd)
2 �

�
A(free)
2 

B(free)

2 �
, [13]

where 
k � x, y, z and 
� are the rms fluctuations in position and
orientation of B with respect to A in the complex. The contri-
bution from libration of B in the complex is obtained by assuming
that it is isotropic (the axis ��� is uniformly oriented in space)
and quasiharmonic over small magnitudes of �, which results in
the factor of 
�

3��63� (18). Fluctuations in internal coordinates
are assumed to be correlated within each molecule but uncor-
related with fluctuations in the position and internal coordinates
of the other molecule. Because � is defined with respect to A and
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B at large separation, the contributions of internal f luctuations
of A and B in the bound (bnd) state are normalized by those in
the dissociated (free) state, namely �
i(bnd)

2 ���
i(free)
2 �, i � A, B, and

contribute only if they change on binding. Because we have used
the quasiharmonic approximation to factor out and treat explic-
itly internal coordinate fluctuation contributions to the pmf, �min
in Eq. 13 contains just the intermolecular interactions between
A and B at the minimum energy conformation, the solvent
contributions, plus any internal energy contributions due to the
change in the average conformation of A and B on binding. The
last three factors in Eq. 13 are the contributions from residual
translational motion, residual librational motion, and changes in
internal f luctuations, respectively. The Gaussian distribution of
r, � about the pmf minimum means that the greatest contribu-
tions to the integral of H(r, �) come from near the minimum,
and that contributions further away rapidly decrease because of
exponential weighting. Thus little error comes from dropping the
restriction of the integral to the region where H(r, �) � 1
entailed in the upper integration limit of � in Eq. 12.

The quasiharmonic approximations for the binding enthalpy and
entropy are obtained by differentiation of Eq. 13 with respect to T

�H � �min � T
d�min

dT
	

6kT
2

[14]

and

�S
k

� ln�e3�2	2�3
x
y
z

Vref
� 	 ln�e3/2
�

3

	63�
� 	 ln�	�
a(bnd)

2 

b(bnd)
2 �

�
a(free)
2 

b(free)

2 ��
�

1
k

d�min

dT
, [15]

where the four terms in Eq. 15 can be identified as the trans-
lational, rotational, internal, and solvent contributions to en-
tropy, respectively. The solvent contribution arises from changes
in the water configurations, as distinct from the internal and
intermolecular configurations of A and B.

Methods
The quasiharmonic approximation of the generalized Bjerrum
approach is implemented in an extension of our previous ap-
proach to absolute binding free energy calculations (19). Starting
from a known complex structure (derived from x-ray crystallog-
raphy, NMR, or model building), Eq. 13 is evaluated by:

(i) Minimization of AB, A, and B by using molecular mechan-
ics, to obtain the structures for the complex at the pmf
minimum, �min, and the unbound species, respectively.

(ii) Determination of the solvation free energies of A, B, and AB
by using the Finite Difference Poisson–Boltzmann (FDPB)�
surface area method (20) to yield:

�min � �Uinternal 	 �Uintermolecular 	 ��Area 	 �Gsolvation
electrostatic,

[16]

where �Uinternal � �Uintermolecular is obtained from the
difference in molecular mechanics potential energy of A
and B in the bound and free states, �Area is the change in
solvent accessible surface area on binding, � is the apolar
hydration surface free energy coefficient, and �Gsolvation

electrostatic

is the difference in PB electrostatic solvation free energy
between the bound and free molecules. The solvent
contribution to the entropy of binding (last term of Eq.
15) arises from the temperature dependence of � and
�Gsolvation

electrostatic, i.e., from the temperature dependence of the
hydrophobic strength and the dielectric constant of water,
�. Here we do not split the solvation free energy contribu-

tions into enthalpic and entropic terms by including the
temperature dependence of � and �, but it would be
important to do so when comparing total entropies of
binding with experimental data, otherwise the estimation of
the translational and rotational contributions would be in
serious error.

(iii) Molecular dynamics simulations of A, B, and AB followed by
analysis of coordinate snapshots to determine 
X, 
Y, 
Z, 
�,
�
i(bnd)

2 � and �
i(free)
2 �.

Thus the quasiharmonic assumption allows us to replace the
evaluation of the pmf over the entire H(r, �) � 1 region with a
less expensive (but still computationally intensive) evaluation at
a single point (�min) combined with an estimate of the ‘‘width’’
of the binding well (the rotational and translational entropy
terms). We reemphasize the point made by Gilson et al. (1) that
without the latter contribution, �min, even though it is a free
energy, cannot be meaningfully compared to a measured abso-
lute binding free energy. Furthermore, estimation of �min by the
difference in potential energy between bound and free states is
usually a poor estimator of even relative free energies, because
it also lacks the solvent and molecular internal entropies.

To illustrate the contribution of the different terms to the binding
constant and free energy, we examined four test cases that exhibit
a range of binding characteristics: ion–cryptate binding, N-methyl
acetamide (NMA) dimerization, antibody FAB fragment–
digoxigenin binding, and streptavidin–biotin binding.

Minimization and Molecular Dynamics. Generation of the NMA
structure, model building, minimization, and molecular dynamics
were carried out with the INSIGHTII and DISCOVER packages with
the consistent valence forcefield (CVFF) (Accelrys, San Diego),
except for biotin, for which partial atomic charges were taken from
Miyamoto and Kollman (21). The ion–tricyclic cryptate complex
Cl�SC24 structure was taken from Metz et al. (22). Br�SC24 was
built by changing the identity of the ion and reminimizing the
structure. The structure of the FAB fragment 21-10-digoxigenin
complex (23) was taken from entry 1IGJ of the Protein Data Bank
(PDB); the structure of the streptavidin–biotin complex was taken
from PDB entry 1STP (24).

Hydrogens were added and the structures minimized by conju-
gate gradient with a nonbond cutoff of 12 Å and a dielectric of 1.
Molecular dynamics simulations were performed with a time step
of 1 fs, nonbonded cutoff of 12 Å, temperature of 298 K, and a
distant dependent dielectric of 1R. The distant-dependent dielec-
tric is a rather crude approximation for the energetic effects of
solvent, but it is convenient, rapid, and produces reasonable dy-
namic behavior, which is appropriate because the dynamics is used
in our protocol not for solvent energetics but for estimating the
amount of internal and intermolecular motion of A and B. Coor-
dinates were saved every 100 steps. To compute �
i(bnd/free)

2 �, coor-
dinate snapshots of either A or B in the complex or alone were
overlaid by using a rigid body alignment. The mean coordinates and
the coordinate fluctuation covariance matrix were then calculated.
The matrix was diagonalized using the Housholder method (25) and
the eigen values determined. The six lowest values (R�T modes)
were generally close to zero, as expected, and were discarded. The
determinant of the internal coordinate fluctuations was then com-
puted as the product of the remaining eigen values. To compute 
X,

Y, 
Z, and 
� coordinate snapshots of the complex were overlaid
by using rigid body alignment of the largest partner (A). The mean
position of B was computed. Then for each aligned snapshot of the
complex, the required translation (x, y, z) and rotation (
, �, �)
required to realign B with its average position were computed and
the variances calculated. Numerical precisions were estimated from
the variance in the final quantities between batches of 0.1-ns
simulations.
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FDPB�Surface Area. The procedure for calculating the polar and
nonpolar contributions to the solvation energy was taken from
previous work (20, 26, 27). Atomic radii were taken from the PARSE
set (20), except for Cl� and Br� radii of 1.94 and 2.09 Å, respectively
(28), and digoxigenin, for which consistent valence forcefield
(CVFF) radii were used. The nonpolar contribution to solvation
was obtained by using � � 6 cal�mol�Å2. Solvent-accessible surface
areas were calculated by using the SURFCV algorithm (29). The
polar contribution was calculated by solving the linearized PB
equation using a cubic box with 161 grid points on each side, with
a box fill of 80%, with a resulting scale, depending on the size of the
complex, from 1.5 to 4 grids�Å. The external dielectric constant was
either 80 or 1 for solvent and vacuum, respectively. For ion binding
to the cryptate SC24, significant polarization of the cryptate ligand
groups from the strong ion field is likely. Polarization cannot be
included in the CVFF. However, to estimate its effects, we used the
local dielectric constant (LDC) model (30) with the FDPB method.
In this method, the calculated difference in electrostatic energy of
the ion binding to the neutral cryptate in vacuum with a cryptate
dielectric of 1 (no Sc24 polarization) and a cryptate dielectric of 2.31
(derived from the polarizability in the LDC model) is used to
estimate the effect of polarization. Numerical precision in the
solvation calculations was estimated by repeating the calculations
with different mappings of the molecules onto the finite difference
grid.

Results
The first system studied was the binding of an ion to Sc24, a
tricyclic cryptate specific for monovalent anions. Relative bind-
ing data are available (31), which show that Cl� binds about
1,000-fold more tightly than Br�, and one of the earliest appli-
cations of the free energy perturbation (FEP) method was to this
system (32). Because there are no rotational and internal
f luctuation contributions from the spherical ion, the number of
factors contributing to the binding free energy is reduced. The
binding is dominated by a strong electrostatic interaction (Table
1), and the stronger binding of Cl� vs. Br� is due to the more
favorable intermolecular electrostatic interactions of the former:
The smaller Cl� radius permits the liganding groups to approach
more closely (defined by the distance of the liganding groups
from the ion center, the effective locus of the charge distribu-
tion). There are less internal vibrational f luctuations in Sc24 with
Cl� bound than Br�, a consequence of the stronger intermo-
lecular charge–charge interactions with the smaller ion. Cl� has

a greater desolvation penalty. Both these effects reduce the
specificity for Cl�. However, the relative translational contribu-
tion favors the smaller ion because it has slightly more freedom
to move in the cage formed by Sc24, because, even though the
liganding groups are closer to the center of the Cl� ion there is
more space between the van der Waals surface of the ion and the
liganding groups. Polarization of the Sc24 liganding NH groups
by the strong field of the ion is significant and favors Cl� binding
because the liganding groups are closer to the ion. When
polarization is included, good agreement with experiment is
obtained. We note that in the original FEP study, the polariza-
tion effect could not be included, because standard molecular
dynamics force fields are not polarizable. However, the FEP
simulation also underestimated the relative solvation energies of
Cl� vs. Br� as �3.35 kcal�mol. The experimental value is �6.0
kcal�mol (33), close to the value calculated by the FDPB method
(Table 1 legend). It seems likely that in the earlier FEP study,
these two factors almost canceled each other.

Dimerization of NMA in water and other solvents has been
measured by Kresheck and Klotz (34), and this system has been
analyzed theoretically as a model for hydrogen bonding in proteins
(35, 36). This system is an example of binding where both partners
are small and rigid, so internal fluctuations should play a small role
in the binding energetics. Association is driven by a strong inter-
molecular electrostatic interaction between the NH and CO groups,
opposed to a large extent by desolvation [Table 1; Ben-Tal et al.
(35)], leading to weak net binding. As expected, internal fluctua-
tions are only slightly reduced on binding, leading to a small 1
kcal�mol penalty. Unlike this earlier study, we have included an
estimate of the R�T penalty on binding. Because the binding is
dominated by a single hydrogen bond, effectively a one-point
attachment, a large amount of residual rotational motion remains
in the complex (Table 2), leading to a very small rotational
immobilization penalty of 
1 kcal�mol. The translational immo-
bilization is somewhat greater. The sum of all these factors results
in weak binding, in reasonable agreement with experiment, con-
sidering the small numbers involved and the relative uncertainties.

The third system we examined was the antibody FAB fragment
26-10-digoxigenin complex, an example of tight binding of a very
rigid ligand. The major part of the ligand consists of four fused rings,
with only one major conformational degree of freedom: the bond
joining the lactone ring substituent at C17. Binding is driven by
electrostatic interactions, which are primarily hydrogen bonds with
the hydroxyl and lactone oxygens. Because these H-bonds are with
neutral protein groups, the electrostatic desolvation is not large, and
the net electrostatic interaction is favorable (Table 1). Concomi-
tantly, there are significant penalties for R�T immobilization in this
tight-fitting complex. Internal vibrational fluctuation contributions
are small, because the ligand is rigid.

The final system we studied was streptavidin–biotin binding, a
less rigid ligand than digoxigenin, but one of the tightest protein–

Table 1. Binding free energy contributions at 298 K, kcal�mol

Contribution Sc24 (Cl-Br)* NMA Ab-DXN BTN-STP

Polar solvation 4.8 � 0.5† 7.9 � 0.4 16.3 � 0.5 84.4 � 1

Nonpolar solvation 0 �0.6 � 0.1 �4.1 � 0.1 �3.3 � 0.1

Total solvation 4.8 � 0.5 7.3 � 0.4 12.2 � 0.5 81.1 � 1

van der Waals � internal �4.0 �2.0 �2.3 �44.8

Electrostatic �6.5‡ �7.0 �31.5 �62.1

Translation (at 1 M) �0.7 � 0.1 2.4 � 0.1§ 4.3 � 0.1 4.3 � 0.1

Rotation 0 0.8 � 0.1 5.0 � 0.1 4.2 � 0.1

Internal vibration 1.6 � 0.5 1.0 � 2 0.0 � 3 3.5 � 4

Total nonsolvation �9.6 � 0.6 �4.8 � 2 �24.5 � 3 �94.9 � 4

Total �G at 1 M �4.8 � 0.8 2.5 � 2.5§ �12.3 � 3 �13.8 � 5

Measured �G at 1 M¶ �4.2 3.1 �13.9 �18.3

Ab-DXN, antibody FAB fragment– digoxigenin; BTN-STP, biotin–
streptavidin.
*Binding of Cl relative to Br.
†�5.7 kcal�mol of which comes from the difference in ion hydration free
energies.

‡Includes �2.8 kcal�mol from polarization of Sc24 by the anion.
§Includes a factor of ln(2) for the exchange symmetry of the dimer.
¶Data taken from refs. 31, 34, 49, and 50.

Table 2. Summary of translation and rotation contributions to
binding at 298 K

Contribution Cl�Sc24 NMA2 26-10-DXN BTN-STP

�Gbind at 1 M �5.6–6.8 2.5 �12.3 �13.8


x
y
z Å3 0.002 1.9 0.08 0.08


� (132°)* NA† 106° 10° 16°

�Htrans 	 �Hrot 0.89 1.78 1.78 1.78

� T�Strans at 1 M 5.6 1.5 3.4 3.4

� T�Srot 0 
0.1 4.1 3.3

� T�Sassoc at 1 M 5.6 1.5 7.5 6.7

DXN, digoxigenin; BTN-STP, biotin–streptavidin.
*Expected for isotropic libration.
†Not applicable for a monoatomic ligand.
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ligand associations known and thus a paradigm for high-affinity
protein binding. This system has been extensively studied most
notably by a combination of molecular dynamics, FDPB�surface
area and normal mode analysis (21, 37), a hybrid method developed
in part to calculate absolute binding constants. Binding is again
driven by a strong intermolecular interaction, worth about �107
kcal�mol. Of this interaction, �62 kcal�mol is electrostatic, which
is opposed by �81 kcal�mol of desolvation, so the net electrostatic
contribution is unfavorable (Table 1), because of the desolvation of
the ureido and carboxylate groups. The binding is driven by the
strong nonpolar interactions composed of van der Waals and
hydrophobic terms, reflecting the extremely good match of shape
and hydrophobic interactions for this complex. Again there are
significant penalties for R�T immobilization in this tight-fitting
complex, although less than for the more rigid digoxigenin ligand.
Biotin has a flexible valeryl carboxylate tail whose mobility is
significantly reduced on binding, adding a 2.5-kcal�mol vibrational
fluctuation penalty. The general balance of interactions in the
Bjerrum model is very similar those found by FEP (21), although
we cannot compare the R�T term because it was not separated out
in that study. We find a very strong net binding free energy, in
agreement with experiment, although the magnitude is somewhat
too low. This underestimate may well be because the quasiharmonic
method used to evaluate the Bjerrum integral is oversimplified for
this system, particularly in representing loss of entropy from bond
rotations. Here a method in which snapshots from an extended
molecular dynamics simulation are postprocessed using the PB
method, permits a larger region of a nonharmonic binding well, e.g.,
from bond rotomerization, to be explored (38).

Discussion
A concise derivation of a general equation for the binding
constant and the enthalpy and entropy components (Eqs. 4, 6,
and 7) is one result of this paper. We refer to this as the
generalized Bjerrum approach: applied to the association of
structureless (spherical) ions and by using a Coulombic potential
to approximate �, it was first used by Bjerrum to derive his well
known expression for the ion association constant (39). In this
application, the limits of H � 1 are from r � a, the distance of
closest approach of the two ions, to r � b, the distance cutoff for
ion pairing introduced by Bjerrum. The Bjerrum expression for
ion pairing is usually presented without detailed derivation,
obscuring its origin in a more exact statistical mechanical
expression. It can, however, be generalized, as shown here, to the
binding of polyatomic molecules.

Comparison with Chemical Potential-Based Derivation. Apart from
notational differences, our final expressions for binding constant
and entropy are almost identical to those derived previously by
using the chemical potential approach [equations 49 and 50 of
Gilson et al. (1)], except we have dispensed with symmetry numbers,
because equivalent positions�orientations are implicitly included
in the full integrals over r��, and have omitted the negligible
pressure–volume term. Indeed, agreement is expected if both
approaches are valid. Eq. 4 is also related to the expression derived
previously for membrane association by Ben-Tal et al. by using the
chemical potential approach (2), with the differences that for
membrane and surface adsorption, the bound molecule is not
confined translationally in the plane of the surface, and the appro-
priate quantity is not an association constant but the surface excess,
which is equivalent in the notation used here to � � �H(e��� � 1).
However, the derivation of KAB we present here is shorter and
arguably clearer in its assumptions and implications than the
standard derivation based on chemical potentials. For example, one
simplification is that it involves just configurational (coordinate)
integrals of a fixed number of particles. There is no introduction or
removal of particles, as implied in the chemical potential approach,
with the attendant momentum terms. Although these cancel to

leave a mass independent binding constant (as required in the
classical approximation), the mass independence is clearer if they
are not introduced in the first place. Furthermore, it is easier to see
that Eq. 4 is exact in the dilute A�B limit even for nonideal
polyelectrolyte solutes such as DNA. This is not so obvious in the
chemical potential approach since polyelectrolytes have nonunity
activity coefficients even at infinite dilution because of ionic
atmosphere effects. Other implications of our approach are dis-
cussed in more detail below.

Delineation of the Bound State. It is clear that a rigorous derivation
of the binding free energy requires explicit delineation between the
bound and unbound states. For mathematical convenience, we
adopt the Heaviside function notation (H � 1�0 delineates bound�
unbound states) used previously for gas phase-monoatomic asso-
ciation (12); alternatively, one could specify (rather complicated)
integration limits on r�� in the integral in Eq. 4. Because one is
ultimately comparing to an experimental measurement of KAB, the
ideal situation would be to make H � 1 correspond exactly to those
configurations that give the ‘‘AB’’ signal with the experimental
probe (spectroscopy, calorimetry, etc.) used to measure the binding
constant. In practice, one rarely knows enough about the experi-
mental method to do this. From a computational point of view, one
often finesses the issue, as in the quasiharmonic example given here:
Most of the contribution to the binding phase volume integral
comes near the minimum of the potential well in r, � phase space,
and the numerical value is rather insensitive to where one cuts off
the bound-state integration. Nevertheless, some definition of AB is
always involved. This problem does not appear to arise in the usual
derivation using chemical potentials, because one assumes there is
a distinct AB species as soon as its chemical, �AB, is introduced.
However, this assumption is misleading, because it merely post-
pones or hides some definition of what AB is. Also �AB is not quite
a standard chemical potential, which is the thermodynamic work of
insertion into pure solvent at constants T and P: If we insert one
‘‘molecule’’ of AB into water at infinite dilution, it will immediately
dissociate, so �AB involves some additional constraint to T and P
that restricts A � B to exactly the region defining the complex.

Role of Solvent. A distinction between R�T contributions to binding
and the role of the solvent is introduced right from the start. It is
inherent in the definition of the complex and the introduction of the
potential of mean force between A and B. Although there is some
degree of freedom (and care required) in choice of coordinates
(40), the R�T coordinates of B are usually defined with respect to
either its center of mass and moments of inertia or its centroid and
geometric moments (nonmass weighted, used in this work). All
solvent effects, including excluded volume, are fully accounted for
by the solvent-mediated potential of mean force between A and B.
Thus in the Bjerrum derivation, the range of integration for B is
4�2V, where V is the total solution volume. This range is fully
consistent with the widely accepted definition of the solute chem-
ical potential as the sum of the thermodynamic work of introducing
a solute into a fixed position plus a ‘‘liberational’’ term from solute
translation�rotation in the entire solution volume (14, 41). The
Bjerrum approach also provides a rigorous definition of solvent and
association entropy contributions without appeal to the gas-phase
Sackur Tetrode expression for translational entropy (often invoked
in the chemical potential type derivations), which has been criticized
as unrealistic for binding in solution (4, 42).

Absolute Binding Free Energies. Calculation of absolute binding
constants has been discussed previously by Gilson et al. (1) and
others, and it remains a computational challenge. As defined by Eq.
5, it is the free energy change when one molecule of B is taken from
a state in which it can rotate and translate freely in a phase volume
8�2Vref (� 1,660 Å3 at 1 M) to the bound state, where it undergoes
restricted R�T motion under the influence of its solvent mediated
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intermolecular interactions with A, in the Boltzmann-weighted
phase volume (BPV) where H(r, �) � 1. Thus, the free energy is
the log of a unitless quantity, the volume ratio VBPV�8�2Vref. The
appearance of VBPV spells out the requirement for any absolute
binding free energy calculation: it must either (i) evaluate a phase
volume integral, preferably over the entire bound state, H � 1, but
at least over the regions at the bottom of the well that make the most
contribution to the integral, (e.g., refs. 13, 43–45, and this work) or
(ii) compute a binding free energy relative to some system whose
VBPV is known (46, 47). A computational protocol that uses only the
difference in free energy between A, B, and AB at some point(s)
in the r, � potential well does not give the absolute binding free
energy. Such protocols include ‘‘single point’’ FDPB calculations,
double disappearance (48), binding energy scoring schemes, and
many other empirical binding methods. These methods provide
either � or its equivalent at a single point (usually the minimum) on
the �(r, �) surface, or the average �(r, �) for some region about
the minimum.

It should also be noted that when ‘‘single point’’ methods are used
for relative binding, this is equivalent to the assumption that the
shape of the �(r, �) well is the same, and only its depth is changed.
This assumption may not work well comparing systems of widely
differing affinity, because tighter binding usually implies less resid-
ual motion in the complex, i.e., a narrower r, � potential well, in
which case the integration over the bound phase volume must be
evaluated.

Practical Calculation of Binding Free Energies. For many systems of
interest to the biochemist, it would be prohibitive to model the
solvent explicitly. In the generalized Bjerrum approach, the pmf
provides a natural and well defined way to introduce an implicit or
continuum solvent model into the calculations. We have illustrated
this by using the FDPB�surface area implicit solvent model for four
binding reactions, choosing systems with diverse characteristics: the
ligands ranged from a monoatomic ion to a large rigid drug, from
very tight to very weak binding, and from electrostatically domi-
nated to apolar dominated. We chose these systems primarily to
illustrate the Bjerrum approach and to examine the issue of
association entropy, not as a detailed analysis of the most accurate
way to do binding free energy computations. Again, we emphasize
that there are alternative reasonable approximations to those used

here. Nevertheless, the general agreement with experiment is
satisfactory enough that we can draw several conclusions about the
association entropy. The relevant data from our calculations are
summarized in Table 2. First, it is clear that the association entropy
contributions vary quite widely (1.5–7.5 kcal�mol at 298 K), de-
pending on the nature and strength of the binding. The upper limit
is similar to that for association of the rigid cyclic diglycine molecule
(19). The lower limit, for the partially immobilized NMA, is similar
to estimates of 1.3 kcal�mol for another partially immobilized case,
a lipid in a membrane (2). The translational contribution varies, but
it does not simply increase with strength of binding, being largest for
the tricyclic cryptate, which completely encapsulates the ion. For
this case, the residual motion is about 0.2 Å in the x, y, and z
directions, which is small compared to the value of about 0.8 Å for
immobilization of a sodium ion in the GA channel (13). The
translational part for high-affinity complexes is significantly greater
than that estimated from the cratic equation or recent tethering
experiments (9, 10) (2.4 and 1.5 kcal�mol at 298 K, respectively).
However, we argue that tethering, although undoubtedly producing
an enhancement in association rate and complex stabilization,
cannot be used to extract an estimate of �Strans for the untethered
system. To obtain �Stran, we need to know how much residual
motion of B with respect to A there is in the bound state (Eq. 9).
This residual motion is determined by the specific interactions
between A and B that drive them to form a complex AB with and
without the tether and so are subtracted out when the difference in
binding entropy or free energy is taken. The contribution of
rotational immobilization, which has been omitted in some previous
treatments, including the cratic entropy model, is at least as
important as translational immobilization, particularly for a ligand
that is bound by multiple attachments. Overall, we find that the
association entropy penalty is significant for high-affinity complexes
but smaller than early estimates in the literature of �14 kcal�mol
(at 298 K). How general this conclusion is will be revealed by
calculations on other systems. For calculating this and other con-
tributions to the binding free energy, the generalized Bjerrum
approach provides a rigorous and self-consistent theoretical basis.
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